
- **▼** Capable of 2.5V Gate Drive
- ▼ Small Size & Ultra_Low R_{DS(ON)}
- **▼** RoHS Compliant & Halogen-Free

BV _{DSS}	20V
R _{DS(ON)}	8.8m Ω
I_D^3	50A

Description

AP2080KA series are from Advanced Power innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

Absolute Maximum Ratings@T_i=25°C(unless otherwise specified)

Parameter	Rating	Units		
Drain-Source Voltage	20	٧		
Gate-Source Voltage	<u>+</u> 12	V		
Drain Current, V _{GS} @ 4.5V ³	50	Α		
Drain Current, V _{GS} @ 4.5V ³	45	Α		
Pulsed Drain Current ¹	90	Α		
Total Power Dissipation	3.13	W		
Storage Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$		
Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$		
	Drain-Source Voltage Gate-Source Voltage Drain Current, V _{GS} @ 4.5V ³ Drain Current, V _{GS} @ 4.5V ³ Pulsed Drain Current ¹ Total Power Dissipation Storage Temperature Range	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

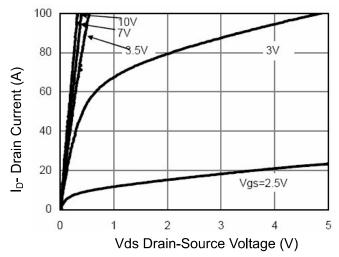
Thermal Data

Symbol	Parameter	Value	Unit
Rthj-c	Maximum Thermal Resistance, Junction-case	5	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	40	°C/W

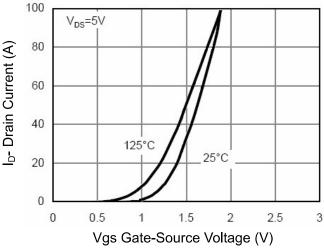
Electrical Characteristics@T_j=25°C(unless otherwise specified)

	<u> </u>	_				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	20	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V, I _D =20A	-	8.8	9.8	$\mathbf{m}\Omega$
		V _{GS} =2.5V, I _D =12A	-	-	14	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =1mA	0.6	-	0.9	V
g _{fs}	Forward Transconductance	V_{DS} =5V, I_D =20A	-	130	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =16V, V _{GS} =0V	-	-	10	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 12V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge	I _D =20A	-	31	62.2	nC
Q_{gs}	Gate-Source Charge	V _{DS} =10V	-	2	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	11	-	nC
t _{d(on)}	Turn-on Delay Time	V _{DS} =10V	-	6	-	ns
t _r	Rise Time	I _D =1A	-	10	-	ns
$t_{d(off)}$	Turn-off Delay Time	R_{G} =3.3 Ω	-	50	-	ns
t _f	Fall Time	V_{GS} =5V	-	40	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	1100	2200	pF
C _{oss}	Output Capacitance	V _{DS} =10V	-	390	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	_	312	_	pF
R_g	Gate Resistance	f=1.0MHz	-	1.4	2.8	Ω

Source-Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =2.5A, V _{GS} =0V	1	ı	1.2	V
t _{rr}	Reverse Recovery Time	I _S =20A, V _{GS} =0V,	-	21	ı	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	26	-	nC

Notes:


- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in² 2oz copper pad of FR4 board, t ≤10sec; 135°C/W when mounted on min. copper pad.
- 4. Maximum current limited by package.

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

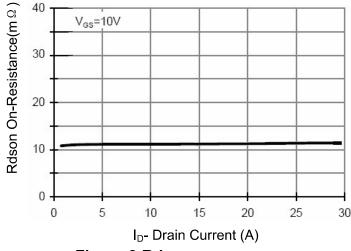
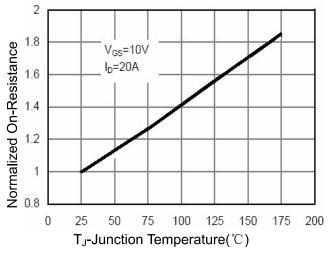



Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

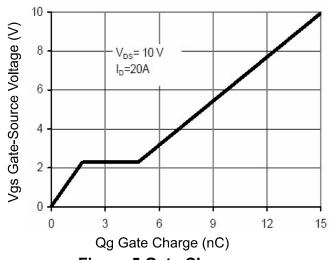


Figure 5 Gate Charge

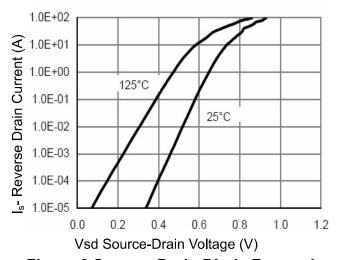


Figure 6 Source- Drain Diode Forward

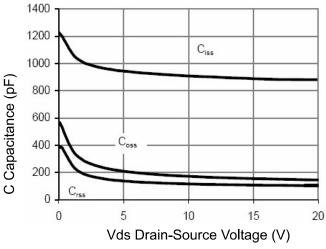


Figure 7 Capacitance vs Vds

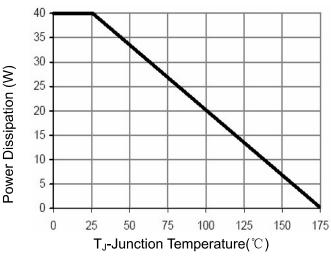
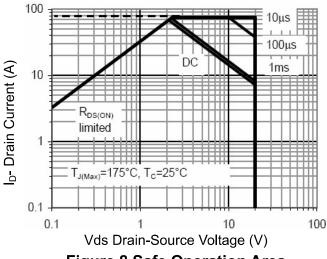



Figure 9 Power De-rating

Figure 8 Safe Operation Area

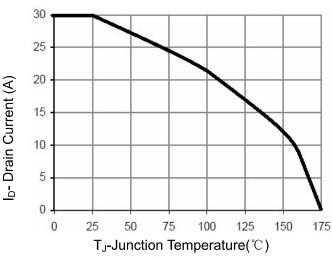
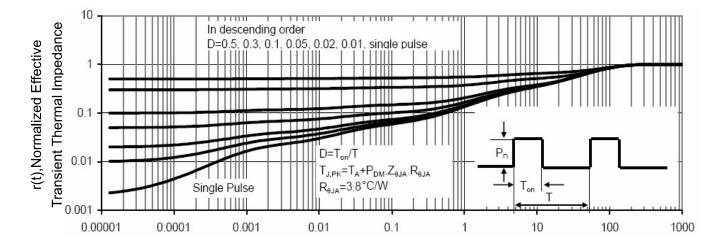



Figure 10 Current De-rating

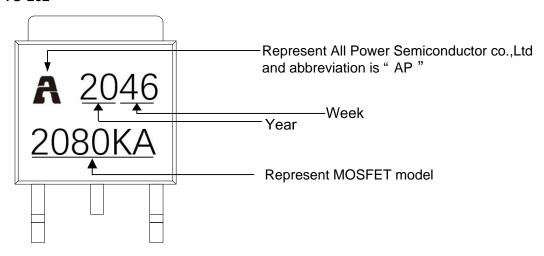

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

MARKING INFORMATION

TO-252

