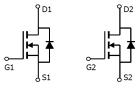


Feature


• 100V,25A

$$\begin{split} &R_{\text{DS (ON)}} < 18 \text{m} \, \Omega \, @V_{\text{GS}} = 10 \text{V} & \text{TYP:15 m} \, \Omega \\ &R_{\text{DS (ON)}} < 24 \text{m} \, \Omega \, @V_{\text{GS}} = 4.5 \text{V} & \text{TYP:20 m} \, \Omega \end{split}$$

- Split Gate Trench Technology
- Lead free product is acquired
- Excellent R DS (ON) and Low Gate Charge
- Tjmax=175°C
- AEC-Q101 qualified

Application

- PWM applications
- Load Switch
- Power management

Schematic Diagram

Marking and pin assignment

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity (PCS)
G180N01GD-AU	APG180N01GD-AU	PDFN5X6-D	13 inch	-	5000

ABSOLUTE MAXIMUM RATINGS (T_J=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Continuous Drain Current (T _C =25℃)	ID	25	А
Continuous Drain Current (T _C =100℃)	ID	17	А
Pulsed Drain Current (1)	I _{DM}	75	А
Single Pulsed Avalanche Energy (2)	Eas	28	mJ
Power Dissipation	P _D	103	W
Thermal Resistance from Junction to Case ⁽⁴⁾	Rejc	1.45	°C/W
Thermal Resistance- Junction to Ambient	$R_{\theta JA}$	65	°C/W
Junction Temperature	TJ	175	$^{\circ}$
Storage Temperature	T _{STG}	-55~ +175	$^{\circ}$ C

MOSFET ELECTRICAL CHARACTERISTICS(T_J=25℃ unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Static Characteristics							
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250µA	100	-	-	V	
Zero gate voltage drain current	I _{DSS}	V _{DS} =100V, V _{GS} = 0V	-	-	1	μΑ	
Gate-body leakage current	Igss	$V_{GS} = \pm 20 \text{V}, V_{DS} = 0 \text{V}$	-	-	±100	nA	
Gate threshold voltage ⁽³⁾	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μA	1	1.8	2.5	V	
	Б	V _{GS} =10V, I _D =20A	-	15	18	mΩ	
Drain-source on-resistance ⁽³⁾	R _{DS(on)}	V _{GS} =4.5V, I _D =15A	-	20	24		
Dynamic characteristics							
Input Capacitance	C _{iss}	V _{DS} =25V, V _{GS} =0V, f =1MHz	-	1130	-	pF	
Output Capacitance	Coss		-	496	-		
Reverse Transfer Capacitance	C _{rss}	_	-	60	-		
Switching characteristics							
Turn-on delay time	t _{d(on)}		-	46	-	ns	
Turn-on rise time	tr	V_{DD} =50V, I_{D} =20A, R_{L} =6 Ω V_{GS} =10V, R_{G} =3 Ω	-	55	-		
Turn-off delay time	t _{d(off)}		-	249	-		
Turn-off fall time	t _f	-	-	105	-		
Total Gate Charge	Qg	\/D0_50\/ ID_00A	-	30	-		
Gate-Source Charge	Qgs	VDS=50V, ID=20A,	-	6	-	nC	
Gate-Drain Charge	Qgd	- VGS=10V	-	8.2	-		
Source-Drain Diode characteristics							
Diode Forward voltage ⁽³⁾	V _{DS}	V _{GS} =0V, I _S =10A	-	-	1.2	V	
Diode Forward current ⁽⁴⁾	Is		-	-	25	Α	

Notes:

- 1. Repetitive Rating: pulse width limited by maximum junction temperature
- 2. EAS Condition: $T_J=25^{\circ}C$, $V_{DD}=20V$, $R_G=25^{\circ}Q$,L=0.5mH
- 3. Pulse Test: pulse width≤300µs, duty cycle≤2%
- 4. Surface Mounted on FR4 Board,t≤10 sec

Typical Performance Characteristics

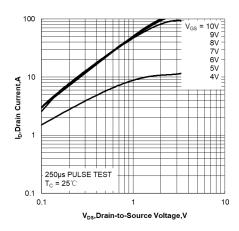


Figure 1. Output Characteristics

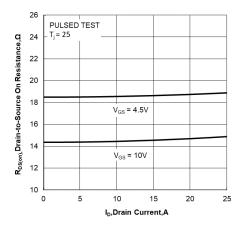


Figure 3. Drain-to-Source On Resistance vs Drain Current

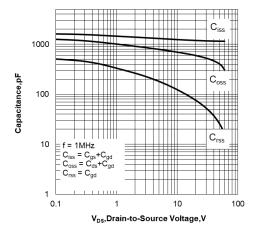


Figure 5. Capacitance Characteristics

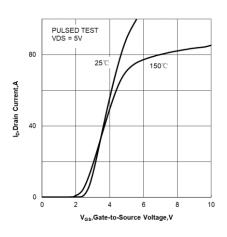


Figure 2. Transfer Characteristics

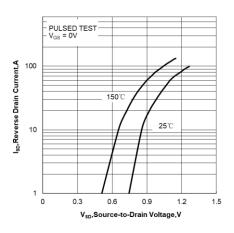


Figure 4. Body Diode Forward Voltage vs Source Current and Temperature

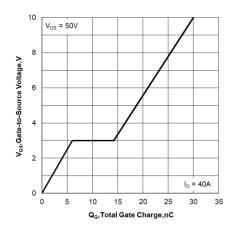


Figure 6. Gate Charge Characteristics

DATA SHEET

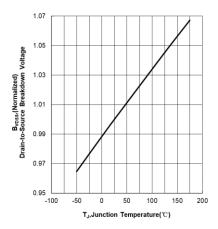


Figure 7. Normalized Breakdown Voltage vs Junction Temperature

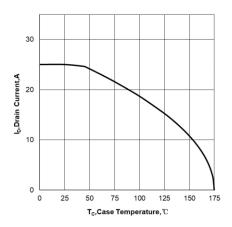


Figure 9. Maximum Continuous Drain Current vs Case Temperature

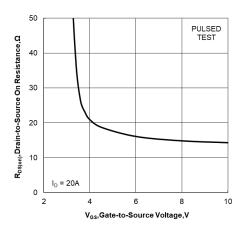


Figure11. Drain-to-Source On Resistance vs Gate
Voltage and Drain Current

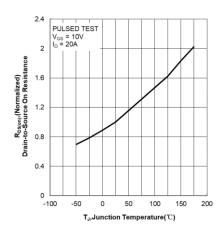


Figure 8. Normalized On Resistance vs

Junction Temperature

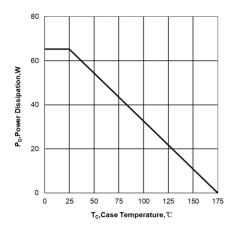


Figure 10. Maximum Power Dissipation vs Case Temperature

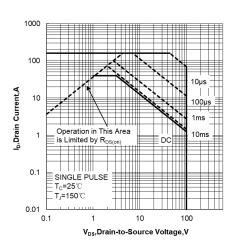
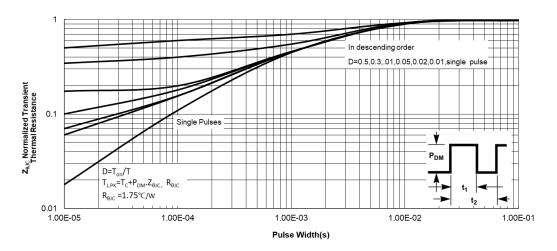
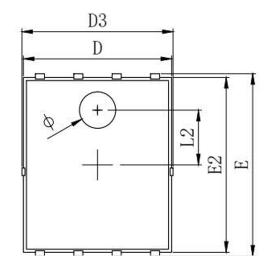
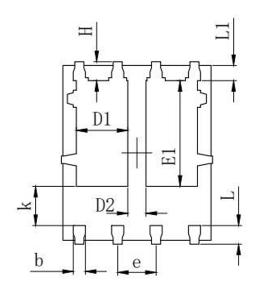
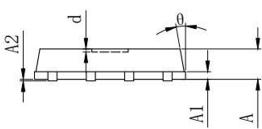
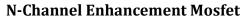


Figure 12. Maximum Safe Operating Area


Figure 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

PDFN5X6 Package Information



SYMBOL	1	MILLIMETER		
SIMDUL	MIN	Typ.	MAX	
A	0.900	1.000	1.100	
A1	3	0.254 REF.		
A2	0~0.05			
D	4.824	4.900	4. 976	
D1	1,605	1,705	1.805	
D2	0.500	0.600	0.700	
D3	4. 924	5.000	5.076	
Е	5.924	6.000	6.076	
E1	3.375	3. 475	3, 575	
E2	5. 674	5. 750	5, 826	
b	0, 350	0,400	0.450	
е	1.270 TYP.			
L	0.534	0,610	0.686	
L1	0.424	0.500	0.576	
L2		1.800 REF.	9	
k	1.190	1.290	1,390	
Н	0, 549	0.625	0.701	
θ	8°	10°	12°	
ф	1.100	1.200	1.300	
d			0.100	

APG180N01GD-AU

Revision History

Revision	Release	Remark
V1.0	2023/01/23	Initial Release

Disclaimer

The information given in this document describes the independent performance of the product, but similar performance is not guaranteed under other working conditions, and cannot be guaranteed when installed with other products or equipment. To achieve the required performance of the product in actual scenarios, the customer should conduct a complete application test to assess the functionality of the product.

Allpower assumes no responsibility for equipment failures result from using products at values that exceed the ratings, operating conditions, or other parameters listed in the product specifications.

The product described in this specification is not applicable for aerospace or other applications which requires high reliability. Customers using or selling these products for use in medical, life-saving, or life-sustaining applications do so at their own risk and agree to fully indemnify.

Due to product or technical improvements, the information described or contained herein may be changed without prior notice.